Mouse Monoclonal Anti-SARS Spike IgG |
|||
AB-17910 | Alpha Diagnostics | 50 ug | EUR 562.8 |
Human IgG antibody Laboratories manufactures the anticorpi anti sars cov2 ig igmqualitativo cromatografia reagents distributed by Genprice. The Anticorpi Anti Sars Cov2 Ig Igmqualitativo Cromatografia reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. To purchase these products, for the MSDS, Data Sheet, protocol, storage conditions/temperature or for the concentration, please contact SARS Antibody. Other Anticorpi products are available in stock. Specificity: Anticorpi Category: Anti Group: Sars Cov2
Anti-SARS-E2 antibody |
||
St John's Laboratory | 100 µl | EUR 280.8 |
Description: Mouse monoclonal to SARS-E2. |
Anti-SARS-M antibody |
||
St John's Laboratory | 100 µl | EUR 280.8 |
Description: Mouse monoclonal to SARS-M. |
JBS True Blue |
||
MiTeGen | 300 µl | EUR 16 |
Description: JBS True Blue |
SARS-CoV-2 IgG Detection Kit (Colorimetric Trimer Anti-Spike IgG detection) |
||
BPS Bioscience | 96 rxns. | EUR 765 |
Description: The SARS-CoV-2 IgG detection kit is designed for qualitative detection of human IgG antibodies in serum collected from individuals suspected of prior infection with the virus that causes COVID-19. This fast and simple ELISA uses the trimeric form of the SARS-CoV-2 Spike protein (BPS Bioscience #100728) to identify IgG antibodies that indicate a previous infection with SARS-CoV-2. The Spike protein is expressed on the viral membrane as a trimer, which means this kit measures IgG antibodies in a more physiologically relevant context than many other commercially available ELISA kits. |
SARS-CoV-2 IgG Detection Kit (Colorimetric Anti-Spike RBD IgG detection) |
||
BPS Bioscience | 96 rxns. | EUR 590 |
Description: The SARS-CoV-2 IgG detection kit is designed for qualitative detection of human IgG antibodies in serum collected from individuals suspected of prior infection with the virus that causes COVID-19. This fast and simple ELISA uses the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein (BPS Bioscience #100696) to identify IgG antibodies that indicate a previous infection with SARS-CoV-2. |
Human Anti centriole and centrosome antibody IgG ELISA kit |
||
BlueGene | 192 tests | EUR 1524 |
Description: A competitive ELISA for quantitative measurement of Human Anti centriole and centrosome antibody IgG in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species. |
Human Anti centriole and centrosome antibody IgG ELISA kit |
||
BlueGene | 1 plate of 48 wells | EUR 624 |
Description: A competitive ELISA for quantitative measurement of Human Anti centriole and centrosome antibody IgG in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species. |
SARS-CoV-2 (COVID-19) NSP6 Antibody |
|||
9177-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4). |
SARS-CoV-2 (COVID-19) ORF6 Antibody |
|||
9189-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3). |
SARS-CoV-2 (COVID-19) ORF6 Antibody |
|||
9189-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
|||
9287-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
|||
9287-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
|||
9289-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
|||
9289-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS CoV-2 One-Step PCR kit |
|||
Oneq-H731-100R | Bioingentech | 100T | EUR 1932 |
SARS CoV-2 One-Step PCR kit |
|||
Oneq-H731-150R | Bioingentech | 150T | EUR 2646 |
SARS CoV-2 One-Step PCR kit |
|||
Oneq-H731-50R | Bioingentech | 50T | EUR 1410 |
BIS(TRIPHENYLSILYL)CROMATE |
|||
802001 | Survival Technologies | each | Ask for price |
Anti-CoV-2 & SARS-CoV S1 Antibody (Clone# CR3022) |
|||
A2103-200 | Biovision | 200 µg | EUR 576 |
SARS CoV E Protein |
|||
abx060650-1mg | Abbexa | 1 mg | EUR 2030.4 |
SARS-CoV-2 (COVID-19) Spike Antibody |
|||
3525-002mg | ProSci | 0.02 mg | EUR 206.18 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody |
|||
3525-01mg | ProSci | 0.1 mg | EUR 523.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) NSP10 Antibody |
|||
9179-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3). |
SARS-CoV-2 (COVID-19) NSP10 Antibody |
|||
9179-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3). |